Dieses Beratungsangebot unterstützt Sie bei der Erstellung einer kommunalen Klimaanpassungsstrategie, um so ein abgestimmtes und kommunales Maßnahmenkonzept zur Anpassung an die Folgen des Klimawandels für Ihre Gemeinde entwickeln zu können.


Grundlageninformationen überspringen und gleich zur Vorgehensweise

Grundlageninformationen für die Erstellung eines Klimaanpassungskonzeptes

Die nachfolgenden Inhalte sollen Ihnen beim Verständnis grundlegender Aspekte des Klimawandels und dem Umgang mit Modelldaten helfen. Für die Erstellung Ihrer kommunalen Anpassunsstrategie schlagen wir Ihnen weiter unten auf dieser Seite ein für Sachsen-Anhalt geeignetes Klimamodell-Ensemble vor, das Sie auch ohne tiefgreifendes Verständnis der Prozesse in der Klimamodellierung verwenden können.

Globale Klimamodelle

Definition

Globale Klimamodelle sind komplexe physikalische Modelle, die das Klimasystem der Erde anhand physikalisch-numerischer Gleichungen computergestützt und zeitabhängig beschreiben. Kalibrierte Modelle ermöglichen die Simulation möglicher zukünftiger Klimaentwicklungen.

Modelle und ihre Eigenschaften

Man unterscheidet zwischen einfachen konzeptionellen Modellen, Modellen mittlerer Komplexität und den hochkomplexen globalen Zirkulationsmodellen (General Circulation Model bzw. Global Climate Model – GCMs). Erweiterte Formen sind beispielsweise gekoppelte Atmosphäre-Ozean-Modelle (AOGCM, atmosphere-ocean general circulation/global climate models). Mathematisch (noch) nicht beschreibbare Prozesse werden hierbei parametrisiert, sprich mit fixen Werten gerechnet. Alternativ kann die Berechnung des Modells auch über spektrale Methoden erfolgen (spektrale Methoden sind ein wichtiges Werkzeug zum numerischen Lösen partieller Differentialgleichungen). Globale Modelle stellen ein unverzichtbares Instrumentarium für voraussichtliche Veränderungen der Häufigkeit und Dauer von charakteristischen Großwetterlagen dar und besitzen eine Auflösung von ca. 200x200km Gitterabstand (IPCC). Eine Visualisierung der räumlichen Auflösung verschiedener Gitterabstände kann der nebenstehenden Abbildung entnommen werden.

 

Beispiele

  • HadGEM2-ES: Hadley Centre Global Environmental Model (Version 2) – Earth System; Großbritannien
  • MPI-ESM: Earth System Modell des Max-Planck-Institutes für Meteorologie (MPI).

Regionale Klimamodelle

Regionalisierte Modelle ermöglichen – im Gegensatz zu den Resultaten globaler Modelle – Aussagen, die auch auf Landkreis- sowie Kommunaler Ebene relevant sein können. Regionalisierte Modellergebnisse basieren auf den Globalmodelle, „brechen“ diese aber auf die regionale Ebene herunter.

Regionale Modelle verwenden wesentliche Ergebnisse der Globalen Modelle als Eingangsgrößen und sind deshalb auch nicht unabhängig von Ihnen. In einem sogenannten „dynamic downscaling“ oder auch „Nesting“ genannten Ansatz, werden regionale Modelle mit ihrer hohen räumlichen Auflösung (häufig 1 bis 10km Raster) in Globale Modelle eingebettet. Die Einbettung und Verwendung wesentlicher Ergebnisse der Globalen Modelle als Eingangsgrößen rührt daher, dass regionale Klimamodelle lediglich einen Ausschnitt der Atmosphäre betrachten und deshalb geeignete Randbedingungen an den Grenzen des Simulationsgebietes benötigen. Diese Randbedingungen stammen aus Simulationen der globalen Klimamodelle. Man spricht in diesem Zusammenhang davon, dass ein regionales Klimamodell durch ein globales Klimamodell angetrieben wird. Neben dem zuvor beschriebenen „dynamic downscaling“ Ansatz, welcher mittels physikalischer Algorithmen Auflösungen von unter 10 km erreicht, existieren noch statistische Ansätze. Bei diesem statistischen Downscaling kommen statistische Methoden zum Einsatz die Auflösungen von bis zu 1 km erreichen. Kombinationen beider Verfahren sind ebenso möglich und finden Verwendung.

Quelle: Deutscher Wetterdienst

Beispiele

  • WETTREG2018
  • CCLM 4-8-17

Klimahistorie/ -vergangenheit (gemessene Daten)

Paläoklima

Forschungsgegenstand der Paläoklimatologie ist die Klimavergangenheit der Erde. Eine Vielzahl von Wissenschaftlern aus den Bereichen Meteorologie, Geologie, Physik, Biologie, Geschichte (Historie),… arbeiten interdisziplinär zusammen, um anhand verschiedener Klimaarchive die klimatologische Geschichte der Erde zu rekonstruieren.

Eine interessante Zeitreise durch das Klima der Erde wurde hier ansprechend visualisiert.

Betrachtet man Wetter und klimatologische Untersuchungen in der Bundesrepublik Deutschland, so werden diese vorrangig durch den 1952 gegründeten Deutschen Wetterdienst (DWD) im Rahmen der Daseinsvorsorge erbracht. Auf gemessene Stationsdaten zu einzelnen Klimadaten kann hierbei digital bis ins Jahr 1881 zurück gegriffen werden, größtenteils bis ins Jahr 1951.

Klimaprojektionen (Zukunft) & Szenarien

Klimaprojektionen sind die Ergebnisse der Klimamodellrechnungen. Mit Hilfe der Klimaprojektionen lassen sich die zukünftigen klimatischen Entwicklungen abschätzen. Klimaszenarien stellen unterschiedliche zukünftige Entwicklungspfade der anthropogenen Einflussfaktoren des Klimas dar und definieren die Randbedingungen für die Modellrechnungen. Dazu gehören beispielsweise die Bevölkerungsentwicklung oder der Umfang von Klimaschutzaktivitäten der Weltgemeinschaft. Es handelt sich bei den Projektionen um keine Vorhersagen, sondern um mögliche Entwicklungspfade des zukünftigen Klimas.

Klimamodelle, Klimaszenarien und die daraus hervorgehenden Klimaprojektionen sind die Datenbasis für die zu entwickelnden kommunalen Maßnahmenkonzepte. Dabei wurde in der Vergangenheit häufig das Szenario A1B verwendet, da dieses auch als Grundlage für andere Anpassungsstrategien auf Bundes- und Landesebene Verwendung fand. Die aktuelle Szenarienfamielie nennt sich RCP-Szenarien.

Für den 5. IPCC-Sachstandsbericht (2013/2014) wurden die RCP-Szenarien von der Wissenschaftsgemeinde in Selbstorganisation entwickelt. Sie stellen den aktuellen Standard dar und wurden gegenüber vorherigen Szearien stark verändert. Als charakteristisch wird nun der sogenannte „anthropogene Strahlungsantrieb“ betrachtet.

Unsicherheiten

Das Themengebiet der Klimaprojektionen ist ebenso wie die Wettervorhersage mit gewissen Unsicherheiten behaftet. Beansprucht die Wettervorhersage einen bestimmten kurzfristigen Zustand der unteren Atmosphäre (Troposphäre) an einem bestimmten Ort der Erdoberfläche zu bestimmen bzw. vorherzusagen, so unterscheidet sich Klimaprojektionen hiervon gravierend. Sie zielen auf statistische Durchschnittswerte über größere Zeitabschnitte und flächenhaft ausgedehntere Gebiete bzw. Räume ab.

Die verschiedenen Unsicherheiten bei Klimaprognosen lassen sich grob in folgende drei Gruppen einteilen:

  1. Unsicherheiten, die die externen Einflussfaktoren auf das Klima betreffen,
  2. Unsicherheiten, die aus der begrenzten Kenntnis über das Klimasystem resultieren und
  3. Unsicherheiten, die in den Klimamodellen selbst begründet sind.

Externe Einflussfaktoren

Da niemand die Entwicklung der Weltgesellschaft über die nächsten Jahrzehnte geschweige Jahrhunderte bestimmen kann oder Einflussfaktoren wie die Bevölkerungsentwicklung, Veränderungen des Konsum- oder Nutzungsverhaltens von Energiequellen bzw. dessen Verbrauch, Fortschritte bei technologischen Entwicklungen und weiterer Einflussgrößen wie Kriege, vorhersagen vermag, bedarf es verschiedener Annahmevarianten. Die Abbildung der Unsicherheiten spiegelt sich in den unterschiedlichen Klimaszenarien wieder, denen jeweils unterschiedliche Annahmen zu Grunde liegen. Klimaprojektionen sind folglich immer Wenn-Dann-Aussagen und haben nicht den Anspruch, „die eine“ Zukunft zu zeigen, sondern unter bestimmten Grundannahmen wahrscheinliche zukünftige Entwicklungen zu projizieren.

Kenntnis über das Klimasystem

Die Kenntnisse über das Klimasystem und seiner Dynamik sind trotz rasch voranschreitender Forschung, wie bei vielen nicht trivialen Themen, noch immer begrenzt. Quantitativ ungewiss ist so beispielsweise, wie sich ein wärmeres Klima zusammen mit einem höheren Kohlendioxidgehalt der Atmosphäre auf die Vegetation auswirken und deren Veränderung wiederum das Klima und den CO2-Gehalt beeinflussen wird. Viele Aspekte der Atmosphärenchemie und -physik mit ihrem Einfluss auf die Wolkenbildung und deren Einfluss auf den atmosphärischen Strahlenhaushalt sind ebenfalls noch nicht hinreichend erfasst und erforscht worden. Nach jüngsten Erkenntnissen führt die Vernachlässigung von Subsystemen wie Kryosphäre und Biosphäre zu einer Reduktion der regionalen Klimavariabilität. Außerdem bleiben mögliche Wechselwirkungen mit diesen Systemen unberücksichtigt.

Klimamodelle

Die Klimaforschung ist bei ihrer Berechnung des zukünftigen Klimas auf Computermodellsimulationen angewiesen. Diese stellen eine Art Ersatzrealität für das hochkomplexe Klimasystem dar. Externe Faktoren sowie die interne Dynamik und insbesondere den Einfluss des Menschen gilt es zur berücksichtigen und darzustellen.

Oft wird ein Ensemble von Klimamodellen, also viele Modellsimulationen mit verschiedenen Klimamodellen, zur Quantifizierung und Verringerung der Unsicherheiten benutzt. Ein- und Ausgangsdaten der Module sind miteinander gekoppelt, damit Wechselwirkungen und Rückkopplungen zwischen den Teilen des Klimasystems abgeschätzt werden können. Trotz der zunehmenden Komplexität der globalen Klimamodelle können zahlreiche Prozesse noch unzureichend modelliert werden. Gründe sind die fehlenden räumlich-zeitlichen Auflösungen und die noch unzureichend erforschten Prozesse und Wechselwirkungen (z.B. Wechselwirkung von Feuchtigkeit, Aerosolen und Wolken). Zum Teil werden diese Prozesse parametrisiert (d.h. physikalische Zusammenhänge unbekannter zu bekannten Größen festgeschrieben), manche Prozesse bleiben aber derzeit auch gänzlich unberücksichtigt.

Skalierungsaspekte: Die Erstellung bzw. Berechnung Regionaler Modelle aus Globalen Modellen birgt verschiedene Herausforderungen und Kritikpunkte. Zu nennen sind hier u.a.:

  • Starke Vereinfachung und grobe Diskretisierung
  • Subjektivität, abhängig von Annahmen über Zukunft
  • Nichtlinearität und zeitliche Veränderung der vielen komplexen Prozesse, Wechselwirkungen, Rückkopplungen
  • Sensibilität bzgl. Rand und Anfangsbedingungen.

Aus diesem Grund sinkt die Wahrscheinlichkeit der Aussagen mit zunehmenden Grad der Abstraktion. Dies sollte bei der Weiterverarbeitung berechneter regionaler Modelle, die beispielsweise zur Validierung bzw. als Eingangsparameter für Stadtmodelle oder weiterer lokaler Untersuchungen verwendet werden, stets Beachtung finden!

Zusammenfassung: Die Kombination aller zuvor beschriebenen Unsicherheiten führt zu einer sehr großen Anzahl von möglichen Zukunftsszenarien, welche eine große Spanne an möglichen Klimazuständen zum Ende des 21. Jahrhunderts und darüber hinaus ergeben können. Die Unsicherheiten des menschlichen Verhaltens sind dabei ebenso wichtig wie die Unsicherheiten des Klimasystems selbst. Nach aktuellem Stand der wissenschaftlichen Forschungen tragen sie zur resultierenden Unsicherheitsspanne etwa gleich viel bei.

Das bedeutet jedoch nicht, dass den gewonnenen Aussagen kein Vertrauen geschenkt werden sollte oder diese grundsätzlich in Frage zu stellen wären. Vielmehr geben sie eine auf dem aktuellen wissenschaftlichen Erkenntnisstand basierende, mögliche zukünftige Entwicklung des komplexen Systems Klima wieder. Mögliche Abweichungen zwischen Modelloutput und Wirklichkeit stellen im Übrigen auch keine Besonderheit von Klimamodellen dar, sondern treffen auf alle Modelle, auch außerhalb der Klimatologie, zu.

Vorgehensweise zur Erarbeitung eines kommunalen Anpassungskonzeptes

Um ein kommunales Anpassungskonzept oder sektorale Maßnahmen zu erarbeiten, sind durch die ausgewählten Akteure die nachfolgenden Arbeitsschritte durchzuführen. Jeder Arbeitsschritt sollte mit einem gemeinsamen Workshop abschließen, um Ergebnisse zu diskutieren und Entscheidungen zu treffen. Planen Sie für den Gesamtprozess mindestens ein Jahr ein.

Arbeitsschritt Arbeiten Meilensteine
Grundlagenermittlung Naturräumliche, wirtschaftliche und soziodemografische Daten erheben, Klimadaten /-projektionen auswerten, Vulnerabilitätskarten erstellen Workshop zur Darstellung regionaler Klimadaten und -projektionen, Auswahl vulnerabler Bereiche
Ermittlung sektoraler Anpassungsmaßnahmen Literaturrecherchen, Interviews mit Akteuren der Sektoren führen, Mögliche Konflikte analysieren Workshop zur Vorstellung sektoraler Anpassungsmaßnahmen
Kommunales Maßnahmekonzept Vernetzte Maßnahmen entwickeln, Verantwortliche festlegen, Controlling abstimmen Abschlussworkshop zur Verabschiedung des kommunalen Klimaanpassungskonzeptes
Umsetzung einschließlich Öffentlichkeitsarbeit Maßnahmen umsetzen und dokumentieren, Zielgruppenspezifische Öffentlichkeitsarbeit durchführen, Jährliches Anpassungsaudit Workshop zu Ergebnissen des „Anpassungsaudits“ und zur Ableitung neuer/angepasster Maßnahmen

Grundlagenermittlung